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Photon mapping — SDS paths
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Photon mapping — Steps

.. Photon tracing

-. Rendering with
photon maps
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caustic lookup



‘ Final gathering?

gathering

500 — 5000 rays

information in the global inaccuracy in the global

photon map too inaccurate maps gets “averaged out”
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‘ Progressive photon mapping

Progressive photon mapping BDPT

Figure 8: Lighting simulation in a bathroom. The scene is illuminated by a small lighting fixture consisting of a light source embedded in
glass. The illumination in the mirror cannot be resolved using Monte Carlo ray tracing. Photon mapping with 20 million photons results in
a noisy and blurry image, while progressive photon mapping is able to resolve the details in the mirror and in the illumination without noise.
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Approximate GI methods
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Motivation

* Distribution path tracing (DPT)
Final gathering (FG)

— Estimate illumination integral at a point by
tracing many rays (500-5000)

— Costly computation

* Irradiance caching accelerates DPT/FG for
diffuse indirect illumination



Motivation

* Spatial coherence

— Diffuse indirect illumination changes slowly over
surfaces

Indirect irradiance — changes slowly



Irradiance caching

* Sparse locations for full DRT computation
* Resulting irradiance stored in a cache &\%

* Most pixels interpolated from cached records

e
paeioc, o

Image credit: Okan Arikan



Irradiance caching

* Faster computation of the diffuse component of
indirect illumination

e Diffuse reflection

L,(p) =E(p) * py(p) [

* View-independence
— Outgoing radiance independent of view direction
— Total irradiance is all we need => cache irradiance



Irradiance caching

* Lazy evaluation of new irradiance values

— Only if cannot be interpolated from existing
ones

* Example: Values E1 and E2 already stored

'Y

— Interpolate at A (fast)
— Extrapolate at B (fast)
— Add new record at C (slow)



Irradiance caching pseudocode

GetIrradiance (p) :
Color E = InterpolateFromCache (p) ;
( BE == invalid )
E = SampleHemilsphere (p) ;
InsertIntoCache(E, p):
E;



Indirect irradiance calculation

A

E SampleHemisphere (p) ;

 Cast 500-5000 secondary rays
(user-specified)

* Compute illumination at
Intersection

— Direct illumination only, or

— Path tracing, or

— Photon map radiance estimate, or
— Query in (another) irradiance cache

— No emission taken into account!




Indirect irradiance calculation

E = SampleHemisphere (p) ;

* Stratified Monte Carlo
hemisphere sampling

— Subdivide hemisphere
into cells

— Choose arandom
direction in each cell and
trace ray




Indirect irradiance calculation

E = SampleHemisphere (p) ;

» Estimating irradiance at p:
E(p) = j Li(p, i) cOsa day

 General form of the stratified estimator
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Indirect irradiance calculation

E = SampleHemisphere (p) ;

* Forirradiance calculation, the integrand is:

L6, ¢) cosb
+ PDF;
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Indirect irradiance calculation

Irradiance estimator for IC:
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Irradiance caching pseudocode

GetIrradiance (p) :

Color E = InterpolateFromCache (p) ;
( E == invalid )

E = SampleHemilsphere (p) ;

InsertIntoCache(E, p):
E;



Record spacing

If E(p) changes slowly => interpolate more
If E(p) changes quickly => interpolate less

What is the upper bound on rate of change (i.e.
gradient) of irradiance?

Answer from the “worst case” analysis
(omitted)



Record spacing

* Near geometry
—> dense spacing

— Geometry = source of indirect
illumination

* Open spaces
—> sparse sampling




Record spacing




Irradiance interpolation

E = InterpolateFromCache (p)

Z Ei(p)wi(p)

i€S(p)

Le€S(p)

- Weighted average: E(p) =

* Records used for interpolation:

S(p) =1{i; w;(p) > 0}



Weighting function

[Tablellion and Lamorlette o04]

Hp_piH 1_n'ni
clamp (2R;, R R ) v/1—c0510°

W (p)=1 - /cmax{




Heuristic "behind” test

* Record at p; rejected from interpolation at p if
pis “behind” p;




Irradiance caching pseudocode

GetIrradiance (p) :

Color E = InterpolateFromCache (p) ;
( E == invalid )

E = SampleHemisphere (p) ;

InsertIntoCache(E, p):
E;




lrradiance cache record

InsertIntoCache (E, p);

* Vector3 position
* Vector3z normal

* floatR

e Co
e Co
e Co

orE
or dEdP[3]
or dEAN[3]

Position in space

Normal at "position’
Validity radius

Stored irradiance
Gradient w.r.t. translation
Gradient w.r.t. rotation



lrradiance cache data structure

InsertIntoCache (E, p);

* Requirements

— Fast incremental updates
(records stored on the fly)

— Fast query for all records (spheres) overlapping a
given point p



Data structure: Octree

InsertIntoCache (E, p);




Data structure: Octree

backto... E

InterpolateFromCache (p)

procedure LLookUpRecordsMR(p, n)
node <« root
while node = NULL do
for all records i stored in node do
if (w; (p) > 0) and (p; not in front of p) then
Include record in S(p).

end if

end for

node <« child containing p

end while
end procedure




Irradiance gradients

no gradients with gradients

Irradiance Interpolation Error

xX=6.875




Irradiance gradients

Essential for smooth interpolation

Calculated during hemisphere sampling
— i.e. no extra rays, little overhead

Stored as a part of the record in the cache

Used in interpolation



Rotation gradient

Figure 2.4: (a) As the surface element is rotated towards the bright surface, irradiance increases. (b) The
rotation gradient V, E; of cache record i gives the axis of rotation that produces maximum increase in
irradiance. The gradient magnitude is the irradiance derivative with rotation around that axis. (¢) When
the surface element is rotated around any arbitrary axis (in our example determined by the change in
surface normal as n; X n) the irradiance derivative is given by the dot product of the axis of rotation and

the rotation gradient: (n; x n) - V, E;.




Rotation gradient formula

[
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Translation gradient

Figure 2.6: (a) As the surface element is translated, it becomes more exposed to the bright surface,
and irradiance increases. (b) The translation gradient V, E; of record i gives the direction of translation
that produces the maximum increase in irradiance. The gradient magnitude is the irradiance derivative
with respect to translation along that direction. When a surface element is translated along any arbitrary
direction, a first-order approximation of the change in irradiance is given by the dot product of the

translation vector and the translation gradient: (p — p;) - V: E;.




Translation gradient formula
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Irradiance interpolation w/ grads

E = InterpolateFromCache (p)

- Weighted average: E(p) =

E; (P) =

(n; X n) - V, Ej

Z Ei(p)wi(p)

i€S(p)

Le€S(p)

(P — Pi) - Vi K



Irradiance caching examples




Irradiance caching examples

Image credit: Eric Tabellion, PDI DreamWorks




Irradiance caching examples

Image credit: Eric Tabellion, PDI DreamWorks



Ambient occlusion

|
Alp) = —/ V(p, w) cosb dw
H+

T




Ambient occlusion




Ambient occlusion caching




Conclusion

Fast indirect illumination of diffuse surfaces
— Sparse sampling & fast interpolation

Biased
Not consistent

Tons of implementation details that | did not
discuss here



Further reading

e Practical Global lllumination with Irradiance
Caching

— SIGGRAPH Course: 2008, Krivanek et al.

— Book, 2009, Krivanek & Gautron

— Both give references to further resources



Point-based Global Illumination




Point-based global illumination

= Original idea

o M. Bunnell, “Dynamic ambient occlusion and indirect
lighting”, GPU Gems 2

= Application in movie production

o P. Christensen, “Point-based approximate color bleeding”,
Pixar tech memo #08-01

= Real-time implementation (CUDA)

o T. Ritschel et al, “Micro-rendering for scalable, parallel final
gathering”, SIGGRAPH Asia 2009
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Point-based global illumination
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Slide credit: Tobias Ritschel



Point-based global illumination
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fill lights

point cloud

i i ) CG III (NPGRO10) - J. Kfivanek 2015
Slide credit: Per Christensen N J
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What did we not cover?




In fact, many things...

= Metropolis Light Transport

= Virtual point lights / Many-light methods

= Precomputed radiance transfer

= Participating media + subsurface scattering
= Real-time GI

= Hair rendering

= Appearance measurement and modeling

CG III (NPGRO10) - J. Kfivanek 2015



Metropolis Light Transport

Image credit: Eric Veach CG III (NPGRO10) - J. Kiivanek 2015




‘ Metropolis Light Transport

(b) Metropolis light transport with an average of 250 mutations per pixel [the same
computation time as (a)].
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Image credit: Eric Veach



Metropolis Photon Tracing

Image credit: Toshiya Hachisuka
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Instant radiosity (VPL rendering)

[Keller 1997]
Approximate indirect illumination by

Virtual Point Lights (VPLs)

.. Generate VPLs Render with VPLs
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Precomputed radiance transfer
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Participating media
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Subsurface scattering

Simulated



Real-time GI

= VPL methods
= Screen-space methods
» Cone-tracing (Unreal Engine)

= Light propagation volumes (CryEngine)
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Hair rendering

Single Scattering Only Path Tracing Reference
(offline) (offline)
3 minutes 22 hours
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‘ Appearance modeling

(a) Micro CT Images (b) Reconstructed Density Field (c) Appearance Matching (d) Rendered Results
and Orientation Field
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Conclusion




Research challenges in rendering

= Existing algorithms are inherently bad
for some practical scenes

= More work to do for rendering researchers
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What else in CG

= Main general CG conferences

0 SIGGRAPH (ACM Transactions on Graphics — TOG)
o SIGGRAPH Asia (ACM TOG)

o Eurographics (Computer Graphics Forum)

= http://kesen.realtimerendering.com/
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What else in CG

= Computational photography

= Appearance modeling & capture
= Animation (& capture)

= Dynamic simulation (hair, cloth, water, smoke, solids...)
= Visual perception

= Natural phenomena

= Non-photorealistic rendering

= Sound simulation

= Display technology

= Interaction technology

= Geometry modeling
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General challenges in CG

= Making CG usable: Ul design, collaboration
= Robust and efficient lighting simulation

= Virtual human
o Hair modeling
o Animation

o Cloth

= Managing complexity
o Natural environments etc

= Virtual Worlds (shared 3D graphics)

= ...and more (the above is my random choice of “grand
challenges”)
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